

DS21Q55DK Quad T1/E1/J1 Transceiver Design Kit Daughter Card

www.maxim-ic.com

GENERAL DESCRIPTION

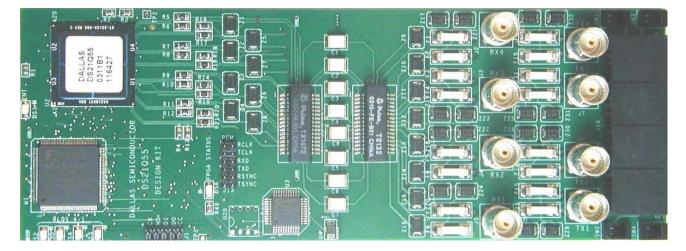
The DS21Q55DK is an easy-to-use evaluation board for the DS21Q55 guad T1/E1/J1 transceiver. The DS21Q55DK is intended to be used as a daughter card with the DK101 motherboard or the DK2000 motherboard. The DS21Q55DK comes complete with a DS21Q55 guad SCT, transformers, termination resistors, configuration switches, line-protection circuitry, network connectors, and motherboard connectors. The DK101/DK2000 motherboard and Dallas' ChipView software give point-and-click access to configuration and status registers from a Windows®-based PC. On-board LEDs indicate receive loss-of-signal and interrupt status. An onboard FPGA contains mux logic to connect framer ports to one another or to the DK2000 in a variety of configurations.

Each DS21Q55DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.

Windows is a registered trademark of Microsoft Corp.

ORDERING INFORMATION

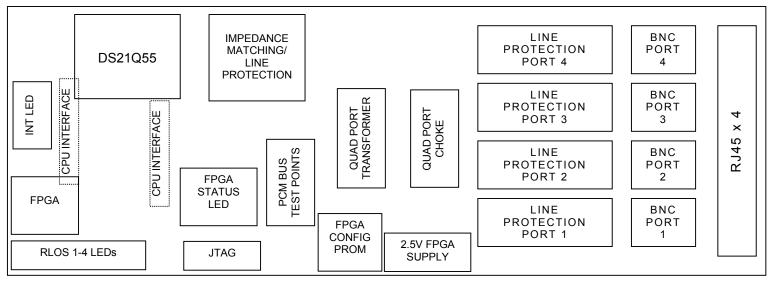
PART	DESCRIPTION
DS21Q55DK	DS21Q55 Demo Kit Daughter Card
DSZIQOODK	(with included DK101 Motherboard)


FEATURES

- Demonstrates Key Functions of DS21Q55 Quad T1/E1/J1 Transceiver
- Includes DS21Q55 Quad LIU, Transformers, BNC, and RJ45 Network Connectors and Termination Passives
- Compatible with DK101 and DK2000 Demo Kit Motherboards
- DK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21Q55 Register Set
- All Equipment-Side Framer Pins are Easily Accessible for External Data Source/Sink
- Memory-Mapped FPGA Provides Flexible Clock/Data/Sync Connections Among Framer Ports and DK2000 Motherboard
- LEDs for Loss-of-Signal and Interrupt Status
- Easy-to-Read Silk-Screen Labels Identify the Signals Associated with All Connectors, Jumpers and LEDs
- Network Interface Protection for Overvoltage and Overcurrent Events

DESIGN KIT CONTENTS

DS21Q55DK Design Kit Daughter Card DK101 Low-Cost Motherboard CD-ROM


ChipView Software DS21Q55DK Data Sheet DK101 Data Sheet DS21Q55 Data Sheet DS21Q55 Errata Sheet

COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART
C1–C8	8	0.22µF, 50V capacitors	Phycomp	PCF1150CT-ND
C9, C10, C12, C18, C22–C33, C35, C38–C43	23	0.1µF 10%, 16V ceramic capacitors (0603)	Phycomp	06032R104K7B20D
C11, C13–C15	4	0.1µF 10%, 25V ceramic capacitors (1206)	Panasonic	ECJ-3VB1E104K
C16, C17, C19–C21, C34, C36, C45	8	1μF 10%, 16V ceramic capacitors (1206)	Panasonic	ECJ-3YB1C105K
C37, C44	2	10µF 20%, 10V ceramic capacitors (1206)	Panasonic	ECJ-3YB1A106M
CH1	1	Quad port choke	Pulse	TX1473
DS1	1	LED, red, SMD	Panasonic	LN1251C
DS2–DS6	5	LED, green, SMD	Panasonic	LN1351C
F1–F16	16	1.25A, 250V fuse, SMT	Teccor	F1250T
J1	1	10-pin, dual row, vertical jumper	Digi-Key	S2012-05-ND
J2–J9 J10	8	5-pin connectors, BNC right-angle vertical	Cambridge	CP-BNCPC-004
	1 2	8-pin 4-port jack, right-angle RJ45	Molex	43223-8140
J11, J12 J13		50-pin socket, SMD, dual row, vertical	Samtec	TFM-125-02-S-D-LC
	1	12-pin connector, dual row, vertical	Digi-Key	S2012-06-ND ERJ-6ENF1002V
R1, R2, R4	3	10kΩ 1%, 1/10W resistors (0805)	Panasonic	ERJ-BENF 1002V
R3, R26, R39, R41, R45	5	10kΩ 5%, 1/10W resistors (0805)	Panasonic	ERJ-6GEYJ103V
R5–R12, R14–R21, R48	17	0Ω 5%, 1/8W resistors (1206)	Panasonic	ERJ-8GEYJ0R00V
R13	1	470Ω 5%, 1/10W resistor (0805) Panasonic		ERJ-6GEYJ471V
R22–R25	4	51.1Ω 1%, 1/10W resistors (0805)	Panasonic	ERJ-6ENF51R1V
R27, R28, R38	3	1.0k Ω 1%, 1/10W resistors (0805)	Panasonic	ERJ-6ENF1001V
R29–R36	8	61.9Ω 1%, 1/8W resistors (1206)	Panasonic	ERJ-8ENF61R9V
R37, R47	2	Not populated	Panasonic	Not populated
R40, R42–R44, R46, R49	6	330Ω 0.1%, 1/10W MF resistors (0805)	Panasonic	ERA-6YEB331V
SW1–SW4	4	6-PIN TH Switch DPDT	Тусо	SSA22
T1	1	XFMR, XMIT/RCV, 1 to 2, SMT 32-pin	Pulse	TX1473
U1	1	XILINX spartan 2.5V FPGA 144-pin, 20 x 20 TQFP	Xilinx	XC2S50-5TQ144C
U2	1	Quad T1/E1/J1 transceiver 256-pin BGA, 0°C to +70°C multichip module	Dallas Semiconductor	DS21Q55
U3	1	1M PROM for FPGA 44-pin TQFP	Xilinx	XC18V01VQ44C_U
U4	1	8-pin μMAX, SO 2.5V or ADJ		MAX1792EUA25
U20	1	Serial configuration EEPROM for XILINX 65kb, 8-DIP AT17LV6		AT17LV65EUA-NOPOP
Z1–Z8	8	50A, 6V Sidactor, DO214 SMD	Teccor	P0080SAMC
Z9–Z16	8	500A, 25V Sidactor, DO214 SMD	Teccor	P0300SCMC
Z17–Z32	16	500A, 170V Sidactor, DO214 SMD	Teccor	P1800SCMC

BOARD FLOORPLAN

ERRATA

- Connector J1 has silk-screen mislabeled such that the text TMS and TCK should be swapped. Worded differently, TCK belongs to pin 7 and TMS belongs to pin 9.
- Switches SW1 to SW4 are missing silk screen to indicate which side is grounded. Sliding the switch toward the BNC grounds the BNC shell (E1 mode). For T1 mode the switch should be slid away from the BNC.

BASIC OPERATION

This design kit relies upon several supporting files, which are available for downloading on our website at <u>www.maxim-ic.com/telecom</u>. See the DS21Q55DK QuickView data sheet for these files.

Hardware Configuration Using the DK101 Processor Board:

- Connect the daughter card to the DK101 processor board.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the 'TIM 5V supply' headers are unused.)
- All processor board DIP-switch settings should be in the ON position with exception of the flash-programming switch, which should be OFF.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

Using the DK2000 Processor Board:

- Connect the daughter card to the DK2000 processor board.
- Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply may be connected to connector J2.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

General

- Upon power-up, the RLOS LEDs (green) will not be lit, the INT LED (red) will not be lit, but the FPGA status LED (green) will be lit.
- When operating in E1 mode, slide SW1–SW4 such that the BNC shell is grounded (to the left, as shown in the board floorplan). When operating in T1 mode, ensure that SW1–SW4 are slid to the right as shown in the board floorplan.

Miscellaneous

- Clock frequencies and certain pin bias levels are provided by a register-mapped FPGA, which is on the DS21Q55 daughter card.
- The definition file for this FPGA is named DS21Q55DC_FPGA.def. The definitions are located on page 6. A drop-down menu on the top of the screen allows for switching between definition files.
- All files referenced above are available for download as described in the section marked "BASIC OPERATION"

QUICK SETUP (DEMO MODE)

- The PC will load ChipView offering a choice between DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Demo Mode.
- The program will request a configuration file, select among the displayed files (DS2155_E1_DSNCOM_DRVR.cfg or DS2155_T1_DSNCOM_DRVR.cfg).
- The Demo Mode screen will appear. Upon external loopback, the LOS and OOF indicators will extinguish.
- Note: Demo Mode interacts with the device driver, which is resident in the DK101/DK2000 firmware. The current implementation of this driver is for one device. As such, the demo mode will only interact with **Port 1**. With minor changes, the device driver is extendible to *N* devices.

QUICK SETUP (REGISTER VIEW)

- The PC will load ChipView offering a choice between DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Register View.
- The program will request a definition file. Select DS21Q55DC_FPGA.def; through the 'links' section this will also load DS21Q55DC.def.
- The Register View Screen will appear, showing the register names, acronyms, and values for the DS21Q55
- Predefined register settings for several functions are available as initialization files.
 - INI files are loaded by selecting the menu <u>File $\rightarrow Reg$ Ini File $\rightarrow Load$ Ini File</u>
 - Load the INI file DS21Q55_T1_BERT_ESF.ini
 - After loading the INI file, the following may be observed:
 - The RLOS LEDs (green) light upon external loopback.
 - All four ports of the DS2Q155 begin transmitting a Daly pattern. When external loopback is applied, the BERT bit count registers BBC1–3 and BEC1–3 may be updated by clearing and setting BC1.LC and clicking the 'Read All' button.

ADDRESS MAP

DK101 Daughter Card address space begins at 0x81000000. DK2000 Daughter Card address space begins at: 0x30000000 for slot 0

0x4000000 for slot 0 0x40000000 for slot 1 0x50000000 for slot 2 0x60000000 for slot 3

All offsets given below are relative to the beginning of the daughter card address space (shown above).

OFFSET	DEVICE	DESCRIPTION
0X0000 to 0X0015	FPGA	Board identification and clock/signal routing
0X1000 to 0X10ff	T1/E1/J1 Transceiver #1	DS21Q55 T1/E1/J1 transceiver, port 1
0X2000 to 0X20ff	T1/E1/J1 Transceiver #2	DS21Q55 T1/E1/J1 transceiver, port 2
0X3000 to 0X30ff	T1/E1/J1 Transceiver #3	DS21Q55 T1/E1/J1 transceiver, port 3
0X4000 to 0X40ff	T1/E1/J1 Transceiver #4	DS21Q55 T1/E1/J1 transceiver, port 4

Table 1. Daughter Card Address Map

Registers in the FPGA may be easily modified using the ChipView host-based user-interface software along with the definition file named "DS21Q55DC_FPGA.def."

FPGA Register Map

OFFSET	REGISTER NAME	TYPE	DESCRIPTION
0X0000	BID	Read-Only	Board ID
0X0002	XBIDH	Read-Only	High-Nibble Extended Board ID
0X0003	XBIDM	Read-Only	Middle-Nibble Extended Board ID
0X0004	XBIDL	Read-Only	Low-Nibble Extended Board ID
0X0005	BREV	Read-Only	Board FAB Revision
0X0006	AREV	Read-Only	Board Assembly Revision
0X0007	PREV	Read-Only	PLD Revision
0X0011	MCSR	Control	DS21Q55 MCLK Pin Source
0X0012	TCSR	Control	DS21Q55 TCLK Pin Source
0X0013	SYSCLKT	Control	DS21Q55 TSYSCLK Pin Setting
0X0014	SYSCLKR	Control	DS21Q55 RSYSCLK Pin Setting
0X0015	SYNC1	Control	DS21Q55 TSYNC Source
0X0016	SYNC2	Control	DS21Q55 TSSYNC Source
0X0017	SYNC3	Control	DS21Q55 RSYNC Source
0X0018	TSERS	Control	TSER Source
0X0019	PRSER	Control	PCM RSER Source
0X001A	PSYNC	Control	PCM RSYNC/TSYNC Source
0X001B	PCLK	Control	PCM RCLK/TCLK Source

Table 2. FPGA Register Map

ID REGISTERS

BID: BOARD ID (Offset=0X0000)
BID is read only with a value of 0xD
XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset=0X0002)
XBIDH is read only with a value of 0x0
XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset=0X0003)
XBIDM is read only with a value of 0x1
XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset=0X0004)
XBIDL is read only with a value of 0x6
BREV: BOARD FAB REVISION (Offset=0X0005)
BREV is read only and displays the current fab revision
AREV: BOARD ASSEMBLY REVISION (Offset=0X0006)
AREV is read only and displays the current assembly revision
PREV: PLD REVISION (Offset=0X0007)
PREV is read only and displays the current PLD firmware revision

CONTROL REGISTERS

Register Name: MCSR

Register Description: **DS21Q55 MCLK Pin Source** Register Offset: **0x0011**

Bit #	7	6	5	4	3	2	1	0
Name	—	_	—	—	_	_	MSRCB	MSRCA
Default			—	—			1	1

Bit 0: DS21Q55 Port 1 and 3 MCLK Source (MSRCA)

0 = Connect MCLK 1 (controls port 1 and 3) to the 1.544MHz clock 1 = Connect MCLK 1 (controls port 1 and 3) to the 2.048MHz clock

Bit 1: DS21Q55 Port 2 and 4 MCLK Source (MSRCA)

0 = Connect MCLK 2 (controls port 2 and 4) to the 1.544MHz clock

1 = Connect MCLK 2 (controls port 2 and 4) to the 2.048MHz clock

Register Name: **TCSR** Register Description: **DS21Q55 TCLK Pin Source** Register Offset: **0x0012**

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21Q55 Port 1 TCLK Source (T1S0, T1S1)

The source for TCLK 1 is Defined as shown in Table 3.

Bit 2 to 3: DS21Q55 Port 2 TCLK Source (T2S0, T2S1) The source for TCLK 2 is Defined as shown in Table 3.

Bit 4 to 5: DS21Q55 Port 3 TCLK Source (T3S0, T3S1) The source for TCLK 3 is Defined as shown in Table 3.

Bit 6 to 7: DS21Q55 Port 4 TCLK Source (T4S0, T4S1) The source for TCLK 3 is Defined as shown in Table 3.

Table 3. TCLKx Source Definition

TxS1, TxS0	TCLK CONNECTION
00	Drive TCLK _x with the 1.544MHz clock
01	Drive TCLK _x with the 2.048MHz clock
10	Drive TCLK _x with RCLK _x
11	N/A

Register Name: **SYSCLKT** Register Description: **DS21Q55 TSYSCLK Pin Setting** Register Offset: **0x0013**

Bit #	7	6	5	4	3	2	1	0
Name	R4S1	R4S0	R3S1	R3S0	R2S1	R2S0	R1S1	R1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21Q55 Port 1 TSYSCLK Source (R1S0, R1S1) The source for TSYSCLK 1 is Defined as shown in Table 4.

Bit 2 to 3: DS21Q55 Port 2 TSYSCLK Source (R2S0, R2S1) The source for TSYSCLK 2 is Defined as shown in Table 4.

Bit 4 to 5: DS21Q55 Port 3 TSYSCLK Source (R3S0, R3S1) The source for TSYSCLK 3 is Defined as shown in Table 4.

Bit 6 to 7: DS21Q55 Port 4 TSYSCLK Source (R4S0, R4S1) The source for TSYSCLK 4 is Defined as shown in Table 4.

Table 4. TSYSCLKx Source Definition

RxS1, RxS0	TSYSCLK _x CONNECTION
00	Drive TSYSCLK _x with the 1.544MHz clock
01	Drive TSYSCLK _x with the 2.048MHz clock
10	Drive TSYSCLK _x with 8.192MHz clock
11	Drive TSYSCLK _x with DS21Q55 Port _x BPCLK

Register Name: **SYSCLKR** Register Description: **DS21Q55 RSYSCLK Pin Setting** Register Offset: **0x0014**

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21Q55 Port 1 RSYSCLK Source (T1S0, T1S1) The source for RSYSCLK 1 is Defined as shown in Table 5.

Bit 2 to 3: DS21Q55 Port 2 RSYSCLK Source (T2S0, T2S1) The source for RSYSCLK 2 is Defined as shown in Table 5.

Bit 4 to 5: DS21Q55 Port 3 RSYSCLK Source (T3S0, T3S1) The source for RSYSCLK 3 is Defined as shown in Table 5.

Bit 6 to 7: DS21Q55 Port 4 RSYSCLK Source (T4S0, T4S1) The source for RSYSCLK 4 is Defined as shown in Table 5.

Table 5. RSYSCLKx Source Definition

TxS1, TxS0	RSYSCLK _x CONNECTION
00	Drive RSYSCLK _x with the 1.544MHz clock
01	Drive RSYSCLK _x with the 2.048MHz clock
10	Drive RSYSCLK _x with 8.192MHz clock
11	Drive RSYSCLK _x with DS21Q55 Port _x BPCLK

Register Name: **SYNC1** Register Description: **DS21Q55 TSYNC Pin Source** Register Offset: **0x0015**

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	T4SRC	T3SRC	T2SRC	T1SRC
Default	_	_	_	_	0	0	0	0

Bit 0: DS21Q55 Port 1 TSYNC Source (T1SRC)

0 = TSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 1 with RSYNC 1

Bit 1: DS21Q55 Port 2 TSYNC Source (T2SRC)

0 = TSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 2 with RSYNC 2

Bit 2: DS21Q55 Port 3 TSYNC Source (T3SRC)

0 = TSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive TSYNC 3 with RSYNC 3

Bit 3: DS21Q55 Port 4 TSYNC Source (T4SRC)

0 = TSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 4 with RSYNC 4

Note: When driving TSYNCx with RSYNCx the corresponding DS21Q55 port should be configured such that TSYNCx is an input (IOCR1.1 = 0) and RSYNCx is an output (IOCR1.4 = 0).

Register Name: **SYNC2** Register Description: **DS21Q55 TSSYNC Pin Source** Register Offset: **0x0016**

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	T4SRC	T3SRC	T2SRC	T1SRC
Default	_				0	0	0	0

Bit 0: DS21Q55 Port 1 TSSYNC Source (T1SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 1 with RSYNC 1

Bit 1: DS21Q55 Port 2 TSSYNC Source (T2SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 2 with RSYNC 2

Bit 2: DS21Q55 Port 3 TSSYNC Source (T3SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive TSSYNC 3 with RSYNC 3

Bit 3: DS21Q55 Port 4 TSSYNC Source (T4Source)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 4 with RSYNC 4

Note: When driving TSSYNCx with RSYNCx the corresponding DS21Q55 port should be configured such that RSYNCx is an output (IOCR1.4 = 0).

Register Name: **SYNC3** Register Description: **DS21Q55 RSYNC Pin Setting** Register Offset: **0x0017**

Bit #	7	6	5	4	3	2	1	0
Name	RSOR1	RSOR0	—	_	R4IO	R3IO	R2IO	R1IO
Default	0	0	_	_	0	0	0	0

Bit 0: DS21Q55 Port 1 RSYNC Setting (R1IO)

0 = RSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 1 with RSYNC_x as shown in Table 6

Bit 1: DS21Q55 Port 2 RSYNC Setting (R2IO)

0 = RSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 2 with RSYNC_x as shown in Table 6

Bit 2: DS21Q55 Port 3 RSYNC Setting (R3IO)

0 = RSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 4 with RSYNC_x as shown in Table 6

Bit 3: DS21Q55 Port 4 RSYNC Setting (R4IO)

0 = RSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 4 with RSYNC_x as shown in Table 6

Note: When driving RSYNCy with RSYNCx the corresponding DS21Q55 port should be configured such that RSYNCx is an output (IOCR1.4 = 0) and RSYNCy is an input (IOCR1.4 = 1).

Table 6. RSYNCx Function Definition

RSOR1, RSOR0	MASTER RSYNC DESIGNATION
00	RSYNC 1 is used to drive other RSYNC pins (providing $R_XIO = 1$)
01	RSYNC 2 is used to drive other RSYNC pins (providing $R_XIO = 1$)
10	RSYNC 3 is used to drive other RSYNC pins (providing $R_XIO = 1$)
11	RSYNC 4 is used to drive other RSYNC pins (providing $R_XIO = 1$)

Register Name: **TSERS** Register Description: **DS21Q55 TSER Pin Source** Register Offset: **0x0018**

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21Q55 Port 1 TSER Source (T1S0, T1S1)

The source for TSER 1 is Defined as shown in Table 4.

Bit 2 to 3: DS21Q55 Port 2 TSER Source (T2S0, T2S1)

The source for TSER 2 is Defined as shown in Table 4.

Bit 4 to 5: DS21Q55 Port 3 TSER Source (T3S0, T3S1) The source for TSER 3 is Defined as shown in Table 4.

Bit 6 to 7: DS21Q55 Port 4 TSER Source (T4S0, T4S1)

The source for TSER 4 is Defined as shown in Table 4.

Table 7. TSERx Source Definition

TxS1, TxS0	TSER _x CONNECTION						
00	Tri-state TSER _x (weak pulldown)						
01	Drive TSER _x with RSER _x						
10	Drive TSER _x with PCM_TXD bus (DK2000 only)						
11	N/A						

Register Name: **PRSER** Register Description: **PCM RSER Source** Register Offset: **0x0019**

Bit #	7	6	5	4	3	2	1	0
Name	_		_	—	R1EN	R1EN	R1EN	R1EN
Default	—	_		—	0	0	0	0

Bit 0 to 1: PCM RSER Source (R1EN)

0 = Do not drive DS21Q55 Port 1 RSER onto PCM_RSER

1 = Logically OR DS21Q55 Port 1 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 2 to 3: DS21Q55 Port 2 TSER Source (T2S0, T2S1)

0 = Do not drive DS21Q55 Port 2 RSER onto PCM_RSER

1 = Logically OR DS21Q55 Port 2 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 4 to 5: DS21Q55 Port 3 TSER Source (T3S0, T3S1)

0 = Do not drive DS21Q55 Port 3 RSER onto PCM_RSER

1 = Logically OR DS21Q55 Port 3 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 6 to 7: DS21Q55 Port 4 TSER Source (T4S0, T4S1)

0 = Do not drive DS21Q55 Port 4 RSER onto PCM_RSER

1 = Logically OR DS21Q55 Port 4 RSER with selected other RSER pins and drive onto PCM_RSER

Note: PRSER register is for use with the DK2000 only.

Register Name: **PSYNC** Register Description: **PCM RSYNC/TSYNC Source** Register Offset: **0x001A**

Bit #	7	6	5	4	3	2	1	0
Name	_	_	T2SR	T1SR	_	_	R2SR	R1SR
Default		_	0	0	_	_	0	0

Bit 0 to 1: PCM_RSYNC Source

R2SR, R1SR	PCM_RSYNC Source
00	PCM_RSYNC is driven by DS21Q55 port 1 RSYNC.
01	PCM_RSYNC is driven by DS21Q55 port 2 RSYNC.
10	PCM_RSYNC is driven by DS21Q55 port 3 RSYNC.
11	PCM_RSYNC is driven by DS21Q55 port 4 RSYNC.

Bit 4 to 5: PCM_TSYNC Source

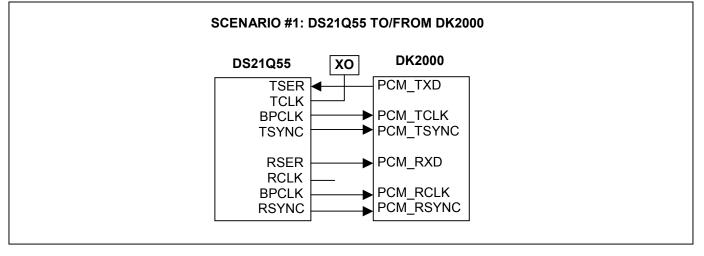
T2SR, T1SR	PCM_TSYNC Source					
00	PCM_TSYNC is driven by DS21Q55 port 1 TSYNC.					
01	PCM_TSYNC is driven by DS21Q55 port 2 TSYNC.					
10	PCM_TSYNC is driven by DS21Q55 port 3 TSYNC.					
11	PCM_TSYNC is driven by DS21Q55 port 4 TSYNC.					

Note: PSYNC register is for use with the DK2000 only.

Register Name: **PCLK** Register Description: **PCM RCLK/TCLK Source** Register Offset: **0x001B**

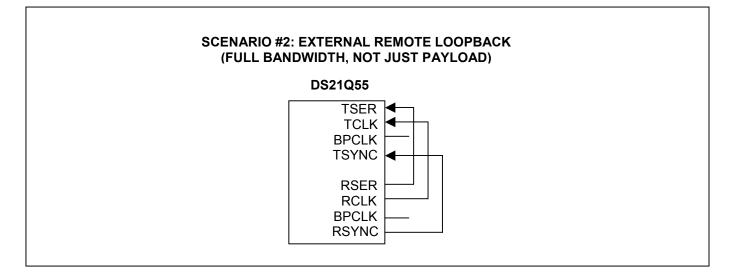
Bit #	7	6	5	4	3	2	1	0
Name	_	TCM	T2SR	T1SR	_	RCM	R2SR	R1SR
Default	_	0	0	0		0	0	0

Bit 0 to 2: PCM_RCLK Source


RCM, R2SR, R1SR	PCM_RCLK Source
000	PCM_RCLK is driven by DS21Q55 port 1 RCLK.
001	PCM_RCLK is driven by DS21Q55 port 2 RCLK.
010	PCM_RCLK is driven by DS21Q55 port 3 RCLK.
011	PCM_RCLK is driven by DS21Q55 port 4 RCLK.
100	PCM_RCLK is driven by DS21Q55 port 1 BPCLK.
101	PCM_RCLK is driven by DS21Q55 port 2 BPCLK.
110	PCM_RCLK is driven by DS21Q55 port 3 BPCLK.
111	PCM_RCLK is driven by DS21Q55 port 4 BPCLK.

Bit 4 to 5: PCM_TCLK Source

TCM, T2SR, T1SR	PCM_TCLK Source
000	PCM_TCLK is driven by source used for DS21Q55 port 1 TCLK.
001	PCM_TCLK is driven by source used for DS21Q55 port 2 TCLK.
010	PCM_TCLK is driven by source used for DS21Q55 port 3 TCLK.
011	PCM_TCLK is driven by source used for DS21Q55 port 4 TCLK.
100	PCM_TCLK is driven by DS21Q55 port 1 BPCLK.
101	PCM_TCLK is driven by DS21Q55 port 2 BPCLK.
110	PCM_TCLK is driven by DS21Q55 port 3 BPCLK.
111	PCM_TCLK is driven by DS21Q55 port 4 BPCLK.


Note: PCLK register is for use with the DK2000 only.

FPGA CONTROL EXAMPLES

Table 8. FPGA Configuration for Scenario #1 (Port 1, T1 Mode)

REGISTER	SETTING	FUNCTION
MCSR	0X01	Drive DS21Q55 ports 1 and 3 MCLK with 2.048MHz
TCSR	0X00	Drive TCLK with 1.544MHz
SYSCLKT	0X00	Drive TSYSCLK with 1.544MHz
SYSCLKR	0X00	Drive RSYSCLK with 1.544MHz
SYNC1	0X00	Tri-state FPGA driver pin for DS21Q55 TSYNC1
SYNC2	0X01	Drive TSSYNC1 with RSYNC1
SYNC3	0X00	Tri-state FPGA driver pin for DS21Q55 RSYNC
TSERS	0X02	Drive DS21Q55 TSER1 with data from PCM bus
PRSER	0X01	Drive DS21Q55 RSER1 onto PCM bus
PSYNC	0X00	PCM RSYNC and PCM TSYNC are provided by DS21Q55 port 1 RSYNC and TSYNC (respectively)
PCLK	0X44	PCM RCLK and TCLK are driven by port 1 BPCLK

Table 9. FPGA Configuration for Scenario #2 (Port 1, T1 Mode)

REGISTER	SETTING	FUNCTION
MCSR	0X01	Drive DS21Q55 ports 1 and 3 MCLK with 2.048MHz
TCSR	0X02	Drive TCLK1 with RCLK1
SYSCLKT	0X00	Drive TSYSCLK with 1.544MHz
SYSCLKR	0X00	Drive RSYSCLK with 1.544MHz
SYNC1	0X01	Drive TSYNC1 with RSYNC1
SYNC2	0X01	Drive TSSYNC1 with RSYNC1
SYNC3	0X00	Tri-state FPGA driver pin for DS21Q55 RSYNC
TSERS	0X01	Drive DS21Q55 TSER1 with data from RSER1
PRSER	N/A	Unused
PSYNC	N/A	Unused
PCLK	N/A	Unused

Table 10. DS21Q55 Partial Configuration for Scenario #2 (Port 1, T1 Mode)

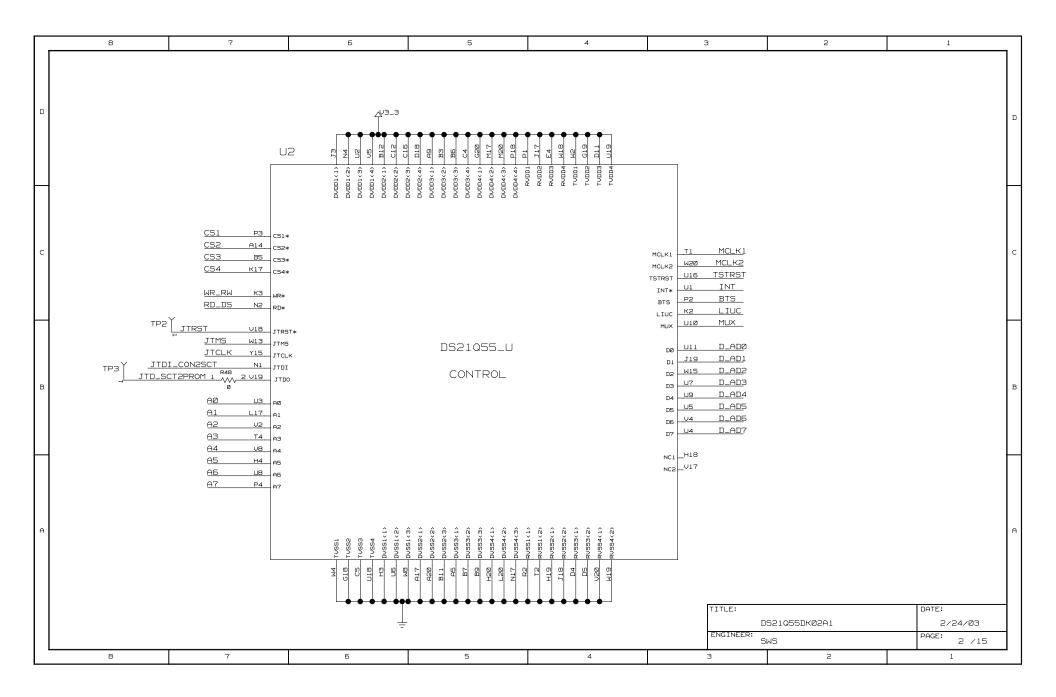
REGISTER	SETTING	FUNCTION
IOCR1	TSIO = 0; RSIO = 0	TSYNc is an input, RSYNC is an output
ESCR	TESE = 0; RESE = 0	Bypass Rx and Tx elastic stores
CCR1	TCSS1 = 0; TCSS2 = 0	TCLK is driven by TCLK pin

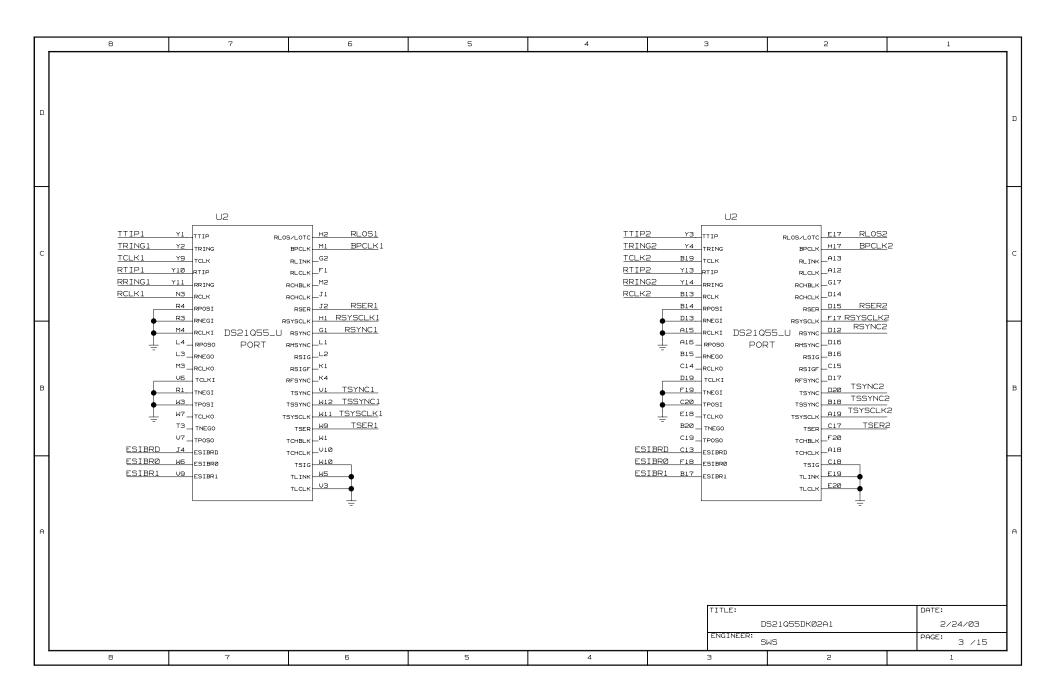
DS21Q55 INFORMATION

For more information about the DS21Q55, please consult the DS21Q55 data sheet available on our website at <u>www.maxm-ic.com/DS21Q55</u>. Software downloads are also available for this demo kit.

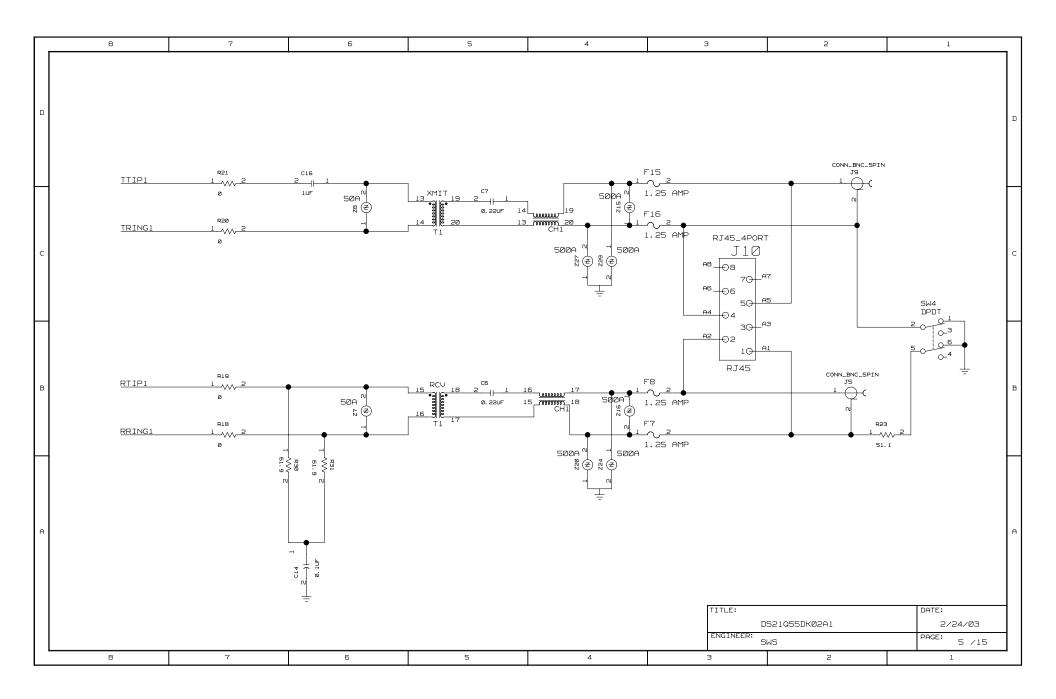
DS21Q55DK INFORMATION

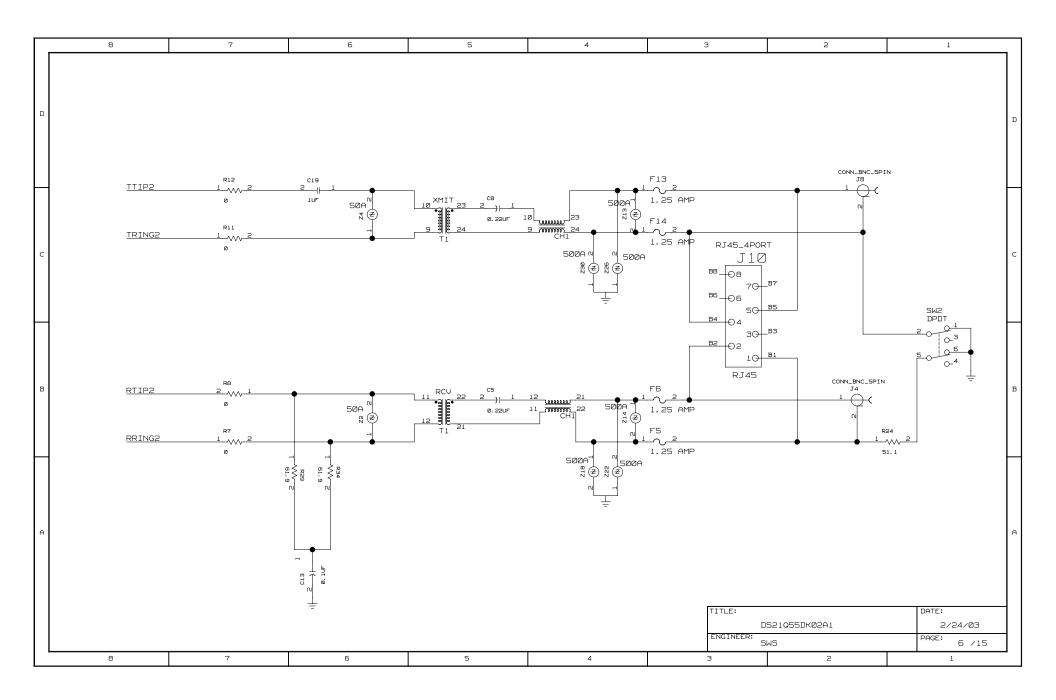
For more information about the DS21Q55DK, including software downloads, please consult the DS21Q55DK data sheet available on our website at www.maxim-ic.com/telecom.

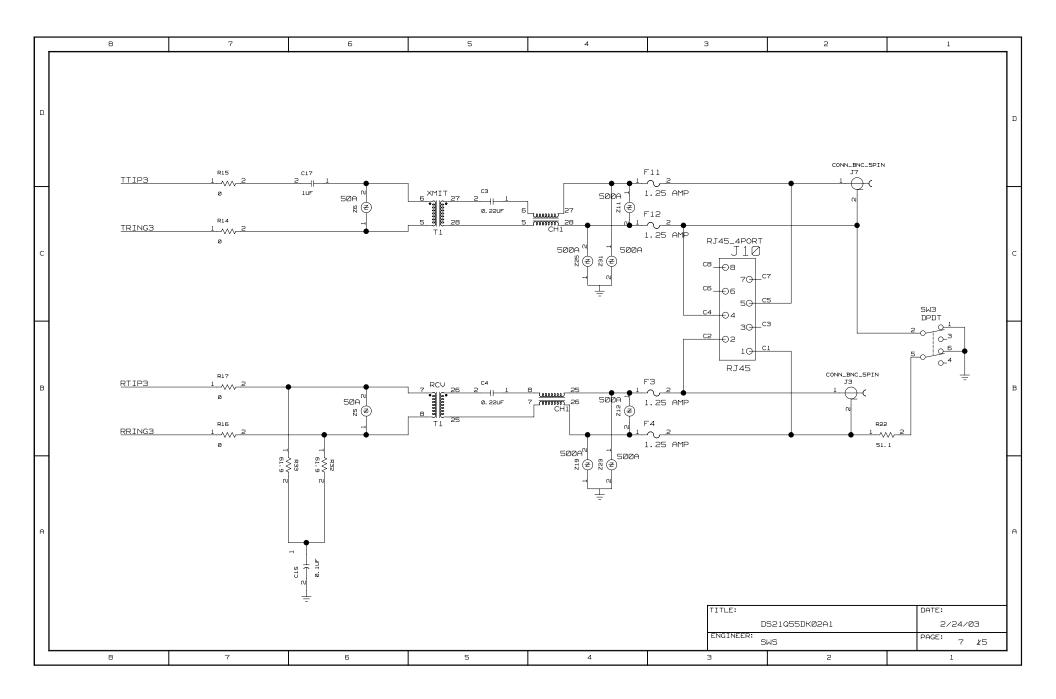

TECHNICAL SUPPORT

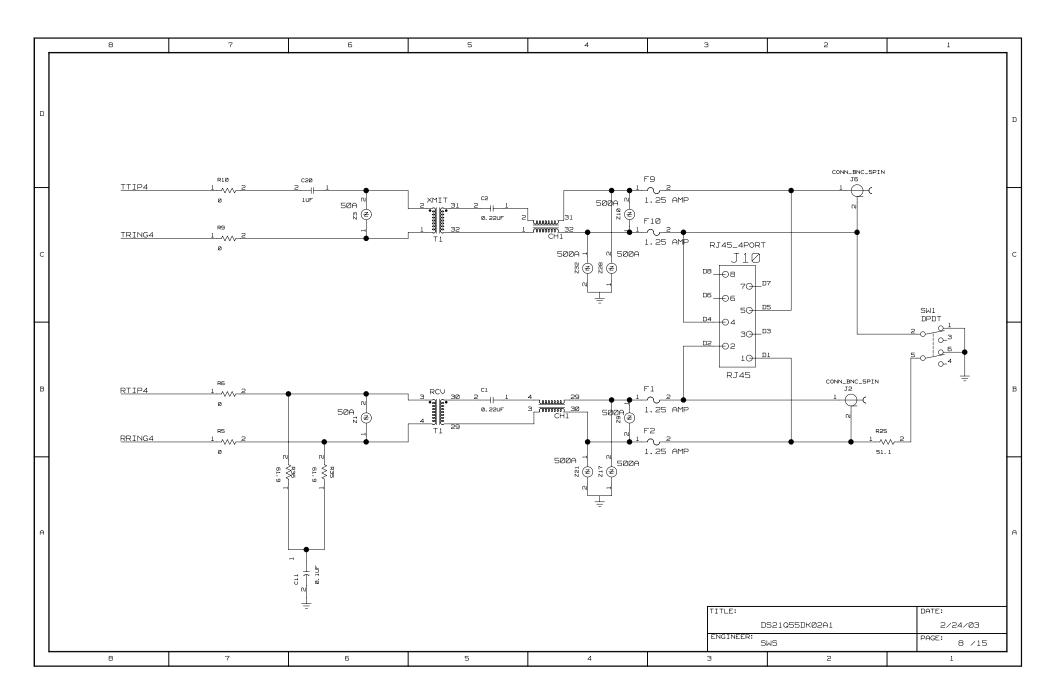

For additional technical support, please e-mail your questions to telecom.support@dalsemi.com.

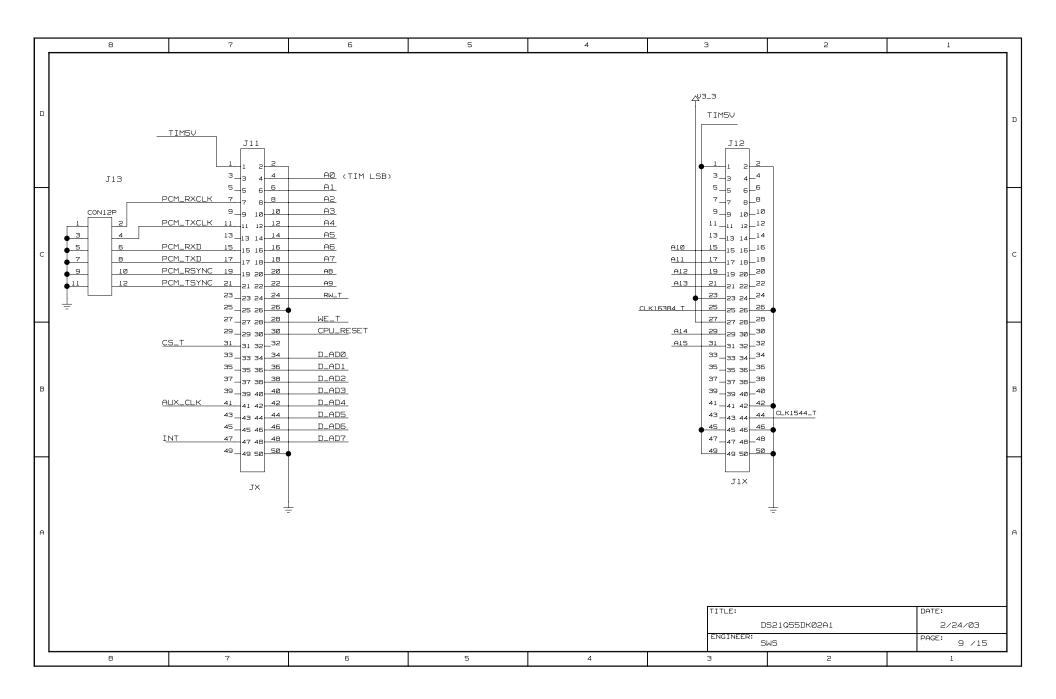
SCHEMATICS

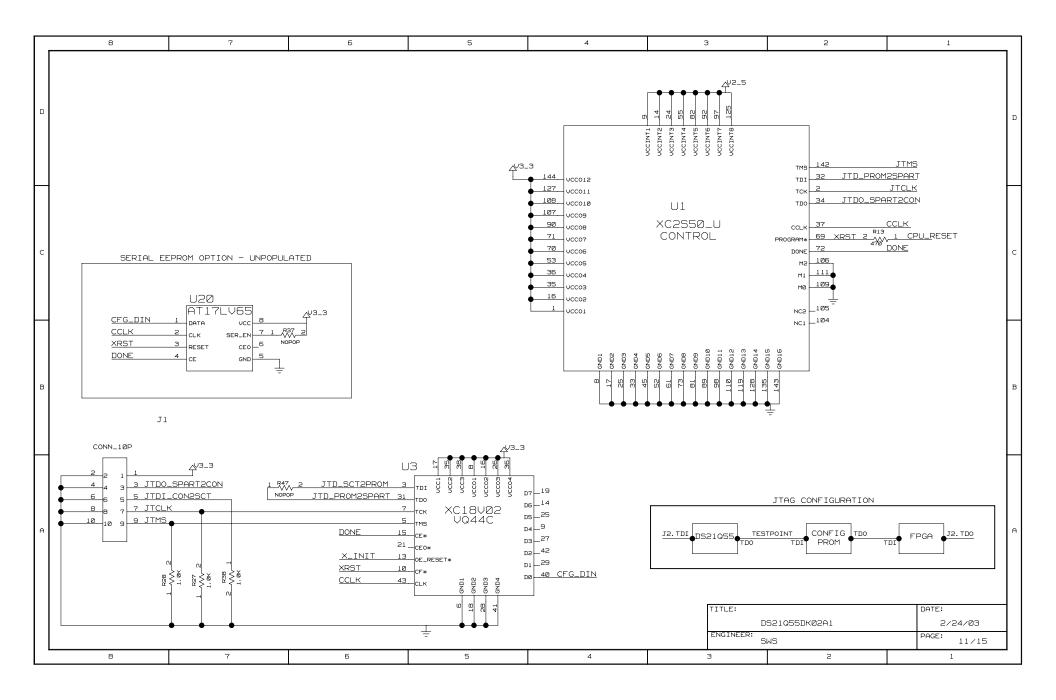

The DS21Q55DK schematics are featured in the following pages.

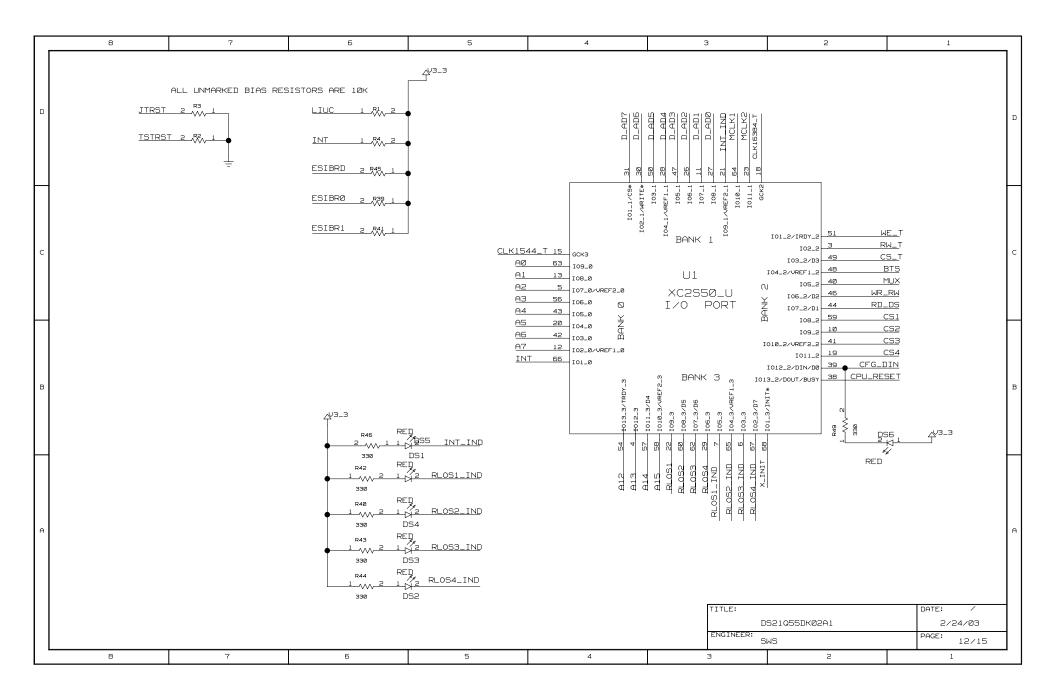

	8	7	6	5	4	3	2	1
D	-	052	105) E S]		KI	r
с								c
в					DF	VISIONS:		Ε
A	3. PORT 1 AND 2 4. PORT 3 AND 4 5. PORT 1 TX / 5. PORT 2 TX / 7. PORT 3 TX / 8. PORT 4 TX / 9. TIM ADDRESS 10. FPGA CROSS C					3/7/2003 - REPLACED 1 TITLE:	FHE SYMBOL XC2S50E_U W:	TH SYMBOL XC2S50_U.
	14. SIGNAL CROSS					ENGINEER:	521055JK02H1	PAGE: 1 /15
	8	7	6	5	4	З	2	1

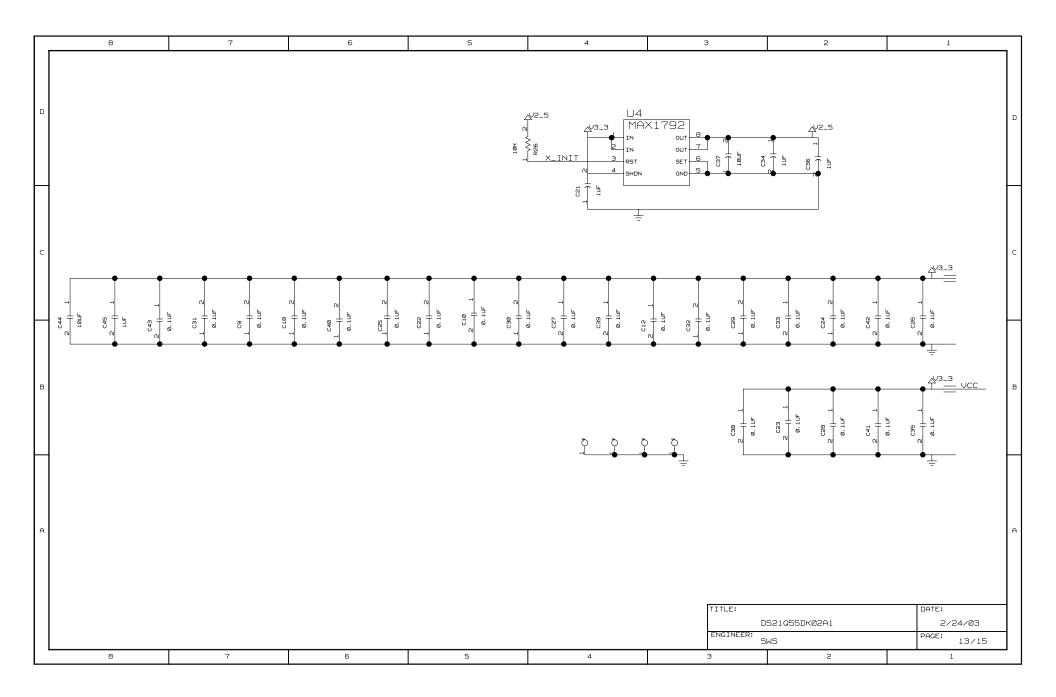





<u> </u>	1
	Г
C	BPCLK4
A A RCLKI DS21Q55_U RSYKCL G3 RSYSCLK3 A A RCLKI DS21Q55_U RSYKC D1 RSYKC D1 RSYKC V12 B1 RPOS0 PORT RHSYKC F2 C2 RNEGO RSIG C1 B4 RCLKO RSIGF D2 C2 RNEGO RSIGF D2 C3 RSYSCLK A2 B4 RCLKO RSIGF D2 C3 RSYKC A2 B4 RCLKO RSIGF D2 C4 RSYKC A2 B5 TCLKI RFSYKC A2 B7 TCLKO RSIGF D2 C7 TSYKC A2 B7 TCLKO RSIGF D2 C7 TSYKC A2 C7 TSYKC A	RSYSCLK4 RSYNC4 TSYNC4 TSSYNC4 TSYSCLK4 TSSR4
A A	
B 7 5 4 3 2	PAGE: 4 /15







Γ	8	7	6	5	4	З	2	1
а				134 RSER2 122 TSER2 131 RCLK2 140 TCLK2 120 BPCLK2 93 RSYSCLK2 94 TSYNC2				ם
с			AUX_CLK BB GCKØ RSER1 113 1012_4 TSER1 78 1011_4 RCLK1 76 1010_4 TCLK1 77 109_4/VR BPCLK1 75 108_4	ст4 ч хс2550_1 ч хс2550_1	IO1_6/TRDY_6 IO2_6 IO2_6 IO3_6/D3 IO4_6/VREF1_6 IO2_6 IO1_6_1I	TSSYNC2 RSER3 TSER3 RCLK3 TCLK3 BPCLK3 RSYSCLK3		c
в			RSYSCLK1 116 107_4 ISYSCLK1 79 106_4 RSYNC1 101 105_4 ISYNC1 74 104_4 ISSYNC1 65 103_4/VR PCM_RXD 95 102_4 PCM_TXD 124 101_4	Y U U	C 108-6 120 D 08-6 137 109-6 137 1010_6/VREF2_6 115 1010_6 118 1012_6 99 1013_6 138 1013_6 138	TSYSCLK3 RSYNC3 TSYNC3 TSSYNC3 PCM_RXCLK PCM_TXCLK		В
A				RSFR4 129 ISFR4 141 RCLK4 136 TCLK4 135 PPCLK4 83 RSYNC4 87 RSYNC4 80 TSYNC4 86	TSSYNCA 139 PCM RSYNC 138 PCM TSYNC 133			A
	8	7	6	5	4	ENGINEER:	S21055DKØ2A1 WS 2	DATE: 2/24/03 PAGE: 10/15

	8	7	6	5	4	з	2	1
ם	**** Signal Cross-Reference A0 9DE A1 9CE A2 9CE A4 9CE A5 9CE A6 9CE A7 9CE A8 9CE A9 9CE A10 9C3< A11 9C3<	5(> 287(R 5(> 387(R 5(> 387(R 5(> 387(R 5(> 387(R </th <th>RLOS4_IND 12A3 12A5 RRING1 3CB 5B8 RRING2 3C4 6B8 RRING3 4CB 7B8 RRING3 4CB 7B8 RRING3 4CB 7B8 RRING4 4C4 6B8 SEFR1 3CD1 10D5 SEFR2 3CD1 10D5 SEFR4 4B1 10A5 STYNC1 3B1 10D5 STYNC2 3B1 10B5 STYNC4 4B1 12B5 STYNC4 4B1 12B5 STYNC4 4B1 3B6 STSULK1 120B5 3B5</th> <th></th> <th></th> <th></th> <th></th> <th></th>	RLOS4_IND 12A3 12A5 RRING1 3CB 5B8 RRING2 3C4 6B8 RRING3 4CB 7B8 RRING3 4CB 7B8 RRING3 4CB 7B8 RRING4 4C4 6B8 SEFR1 3CD1 10D5 SEFR2 3CD1 10D5 SEFR4 4B1 10A5 STYNC1 3B1 10D5 STYNC2 3B1 10B5 STYNC4 4B1 12B5 STYNC4 4B1 12B5 STYNC4 4B1 3B6 STSULK1 120B5 3B5					
с	A13 9C3<>>12A A14 9B3<>>12A A15 9B3<>>12A ALS 9B3<>>12A ALS 9B3<>>12A ALS 9B3<>>12A ALS 9B3<>>12C BPCLK1 3C5>>12C BPCLK2 3C1>>12C BPCLK3 4C5>>12C BPCLK4 4C1>>12A BPC 12C CCLK 11A6 CCLK 11A6 CCLK1 13A CCLK1 14A CCLK1544_T 9B2<>>12C CCS1 12B1<<>>2C CS1 12B1<<>>2C CS3 12B1<<>>2C CS4 12B2<>4	440 F 340 F 74 F 74 F 75 F 75 F 76 F	SPSCLK3 10B3 4B6 SPSCLK4 10B5 4B1 SPSCLK4 10B5 4B1 RTIP1 3C6 5B6 RTIP2 3C4 6B8 RTIP3 4C8 7B4 RTIP4 4C4 8B6 RTIP3 4C8 7B4 TCLK1 10C6 3C8 TCLK2 10D5 3C4 TCLK4 10P5 3C4 TIM5U 9D3 9D8 TRING1 3C6> 5C8 TRING2 3C4> 6C8 TRING3 4C6> 7C8 TSFR1 10C6 3B6 TSFR2 10D5 3B1					
в	ESIBRI 384<>388 ESIBRI 384<>388 INT 263 INT 263 INT. 1285 JTCLK 1188<>28 JTDL_CON2SCT 1188<>28 JTDL_SPART2CON 1187<>11 JTD_PROM2SPART 1165 JTD_SPART2CON 1165	 ⇒ 12D3↔ T ⇒ 12D3↔ T ↔ 12D4↔ T ↔ 142√ 448↔ 12C5 T ↔ 444√ 448↔ 12C5 T ↔ 444√ 448↔ 12C5 T ↔ 144√ 448↔ 12C5 T ↔ 144√ 448↔ 12C5 T ↔ 12D5↔ 12D5↔ T ↔ 12D5↔ 12D5↔ T ↓ 1255↔ 12D5↔ T ↓ 1255↔ ↓ 125↔ ↓	1085 481 1085 481 1085 386 155YNC1 1085 1633 486 155YNC2 1084 155YNC3 1084 155YNC4 1086 157NC1 386 157NC2 381 157NC3 486 157NC4 1085 157NC3 1085 157NC4 1085 157NC4 1085 157NC4 1085 1605 381 157NC3 1085 1605 381 157NC4 1085 1085 481 111P1 305 111P2 304 1111P1 405					-
A	JTHS 1146x> 21 JTRST 287<>>> JTRST 287<>>> LTUC 2C3< MCLK1 1203<>> MCLK2 1203<>> MCLK2 1203<>> PCM_RXNC 9C6<>> PCM_RXNC 9C6<>> PCM_TXCLK 9C6<>> PCM_TXDL 9C6<>> PCM_TADL 3C6>> PCM_TADL 9C6<>> PCM_TADL 3C6>> PCM_TADL 3C6>>	ас х с х 3с х 3с х 40 40 40 40 40 40 40 40 40 40	MR_ENU 12C1<> 2C7< MRST 11A6 K_INIT 11A6<> 12A3<> 13D			TITLE:		DATE:
						ENGINEER:		PAGE:
Ĺ	8	7	6	5	4	З	2	1

Image: Second	8	7	6	5		4	3	2	1	
A A CAS	C C C C C C C C C C C C C C C C C C C		JBC CONN_BNC_SPIN 5D2 J10 RAT45_8 SC3 6C3 7C3 8C3 J11 CONN_S0P2 9D3 J12 CONN_S0P2 9D3 J13 CON12P 9B8 RES1 12D6 RES 12D7 RES 12D7 RES 8207 RES 8207 RES 827 RES 727 RES 727 RES 727 RES 727 RES 527 <		26 SIDACTO 27 SIDACTO 28 SIDACTO 29 SIDACTO 210 SIDACTO 211 SIDACTO 212 SIDACTO 213 SIDACTO 214 SIDACTO 215 SIDACTO 216 SIDACTO 217 SIDACTO 218 SIDACTO 229 SIDACTO 224 SIDACTO 225 SIDACTO 226 SIDACTO 227 SIDACTO 228 SIDACTO 229 SIDACTO 228 SIDACTO 229 SIDACTO 228 SIDACTO 229 SIDACTO 231 SIDACTO	R.2 705 R.2 505 R.2 505 R.2 804 R.2 804 R.2 804 R.2 704 R.2 704 R.2 704 R.2 604 R.2 504 R.2				
A FUSE	C33 CAP 13B2 C34 CAP 13D3 C35 CAP 13B1 C36 CAP 13D2 C37 CAP 13D3 C36 CAP 13B3 C37 CAP 13B3 C39 CAP 13B4 C40 CAP 13B2 C41 CAP 13B2 C42 CAP 13B2 C43 CAP 13B6 C44 CAP 13B6 C45 CAP 13B8 C46 CAP 13B6 C47 CAP 13B6 C48 CAP 13B6 C49 CAP 13B6 C41 CHP 13B6 C42 CAP 13B6 C43 CAP 13B6 C44 CAP 13B6 D51 LED 12B5 D52 LED 12A5 D53 LED	584 6C4 784 7C4 884	R26 RC5.1 1.140 R29 RC5.1 SA6 R30 RC5.1 SA6 R31 RC5.1 SA6 R32 RC5.1 SA6 R33 RC5.1 PA6 R34 RC5.1 BA6 R35 RC5.1 BA6 R37 RC5.1 1.167 R38 RC5.1 1.147 R38 RC5.1 1.246 R40 RC5.1 1.246 R41 RC5 1.266 R42 RC5.1 1.246 R43 RC5.1 1.246							
ENGINEER: PAGE:	A D55 LED 1282 F1 FUSE 884 F2 FUSE 884 F3 FUSE 784 F4 FUSE 784 F5 FUSE 683 F6 FUSE 683 F7 FUSE 584 F8 FUSE 584 F10 FUSE 8C4 F10 FUSE 6C3 F11 FUSE 7C4 F12 FUSE 7C4 F12 FUSE 5C4 F13 FUSE 5C4 F15 FUSE 5C4 F15 FUSE 5C4 F15 FUSE 5C4 F16 FUSE 5C4 J1 CONN_BAC.5F1N 882 J3 CONN_BAC.SF1N 582 J4 CONN_BAC.SF1N 582 J5 CONN_BAC.SF1N		R46 RES 287 R49 RES 1282 SWI SWITCH_DPDT_SLIDE_SP 8C1 SW3 SWITCH_DPDT_SLIDE_SP 8C1 SW4 SWITCH_DPDT_SLIDE_SP 8C1 SW4 SWITCH_DPDT_SLIDE_SP 8C1 SW4 SWITCH_DPDT_SLIDE_SP 8C1 SW5 STENT_SNG 1383 TP2 TESTPOINT_28B 724 TP25 TSTENT_SNG 1384 TP26 TSTENT_SNG 1384 <td< th=""><th>SCS 785 7C5 885</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	SCS 785 7C5 885						
		7				4		- -	PAGE:	